Snow guards and metal roofs 101

snow log
All images courtesy Metal Roof Innovations, S-5! Attachment Solutions

by Harry J. Lubitz, CSI, CDT
The use of snow retention devices originated several hundred years ago in areas of Scandinavia and the Alps. In these cold regions, builders and homeowners placed stones and logs on rooftops to increase their friction with the snow. The purpose of a snow guard is to facilitate the evacuation of rooftop snow in a predictable and controlled fashion—evaporation (sublimation) and thaw—rather than by a sudden and dangerous rooftop avalanche.

Keeping snow in place was important to the structure owner as this construction predated the use of modern insulation. A good layer of snow on the roof in these Alpine climates helped reduce heat loss and keep inhabitants warm. Retaining snow on the roof provided the additional benefit of protecting anyone or anything (such as farm implements and animals) around the structure from accidental release of accumulated snow pack, and subsequent potential injury from its release.

Stones placed on the roof acted as individual ‘cleats’ to engage the snow bank and keep it in place (Figure 1). Logs were akin to continuous fences that engaged the bank of snow. Both methods proved effective in retaining snow and preventing a rooftop avalanche.


In these regions, people have lived with a constant threat of avalanching snow for centuries. Snow depths can reach up to 10 m (32 ft) annually in these parts of the world (Figure 2). Consequently, they learned how to deal with and reduce the hazards of sliding snow.

Figure 1
Figure 1: This cottage shows rocks being used as cleats for snow retention. This method was developed in the Alps and Scandinavia many hundreds of years ago.

There is a science to understanding rooftop avalanches. When snow blankets a roof surface, a frictional, temperature-sensitive, adhesive bond is created between the snow particles and the roof material. A weak cohesive bond is also created at the ridge of the roof connecting the snow packs on each side of the roof. The vertical weight of the snow translates to vector forces—‘drag’ or gravity loads.

At first, the adhesive and cohesive bonds together are sufficient to resist the drag load. However, when the weather clears and the sun’s ultraviolet (UV) rays pass through the translucent bank of snow to the roof surface below, the radiant heat is absorbed by the roof’s surface. The heat energy raises the surface temperature, altering the frictional co-efficient as the bond turns into meltwater. This can happen when ambient temperatures are well below freezing due to the insulating characteristic of the bank of snow. With the frictional (or adhesive) bond now jeopardized, the drag loads exceed the strength of the cohesive bond at the ridge and the snow bank quickly releases, causing a rooftop avalanche.

This science applies to all roof surfaces, the difference being the texture and porousness of the roof materials. For example, metal roofs are more prone to dangerous avalanche hazards because of their slick surfaces, particularly since their polyvinylidene fluoride (PVDF) coatings are chemically related to non-stick Teflon—whereas a granular roof surface would pose a lower immediate risk.

Figure 2
Figure 2: Extensive snowfall amounts-even those a little less than pictured above-require effective snow retention planning on rooftops.

Using snow guards
A snow guard should be used to:

  • protect building occupants and pedestrians;
  • limit liability;
  • shield vehicles and equipment;
  • safeguard landscaping;
  • protect building and roof elements; and
  • reduce maintenance cost.

Several provincial and municipal jurisdictions, along with local school boards and national retailers, have added this design requirement to their building designs. Good practice for snowfall regions suggests roof orientation be diverted away from pedestrian traffic. However, this is often impossible and pedestrian traffic may have to pass below unprotected eaves. Clearly, the safety of individuals walking by a building outweighs the minimal cost of adding snow guards to a project design.

There have been several high-profile court cases where people were injured or killed by snow falling from roofs. For example, in 2011 at Super Bowl XLV in Dallas, Texas, at least six people suffered a range of injuries when warming weather increased the rooftop temperature and caused layers of ice and snow to avalanche from the stadium roof.

Control the content you see on! Learn More.
Leave a Comment

  1. There is definitely a duty of care to the public and visitors to a property if snow fall is likely. Otherwise there is no need to clear the roof unless the depth is ‘exceptional’.
    There is a cinema near us and the metal roof regularly deposits sheets of ice on to the pavement. But they don’t do anything about it.

  2. Thank you for this informative article, Harry. Can you also comment on the risks, if any, resulting from the retention of snow on the roof resulting from the use of snow guards? Assuming the snow guards do their job, retaining snow on the roof, the weight of snow will increase during the winter season. At what point would it be necessary to manually clear the snow from the roof in order not to exceed the roof’s weight bearing capacity?

  3. Roofs are designed to withstand a specific “Designed Roof Snow Load” based on the Building Code which should be used to design and snow guard for a roof. A properly designed snow guard system will take into account essential factors such as, pitch of the roof, the length of the panel or ridge to eave distance, the eave run or assembly length of the snow guard, the Designed Roof Snow Load, and the distance between standing seams. By using these factors you can anticipate the snow load sliding down the roof and how many rows of snow guards you may require, which if multiple rows of snow guards are required will break up the overall load into smaller loads across the roof – so to speak. In the end, the snow load will always be on the roof until the friction between the snow and roof is no longer present. This can happen when the temperature rises and causes the snow to melt along the panel which then reduces the friction, and therefore causes the snow to slide down the roof.

  4. If my neighbor’s roof sheds ice and snow on my property causing a safety concerns for my family and I. What are my next step to getting this resolved.

    1. First talk with them about our concerns , if that does not work check your local bylaws. Speak with someone from your township. If all else fails contact a lawyer

  5. I installed a metal roof rack replacing cedar shacks about 20 years ago. Best thing I ever did for the house. I live in a semi arid area that never sees more than 14 – 18 accumulations of snow. We did have the occasional shed of snow from the roof. Only once did the entire 60 x 18 foot slope let loose. As a result, I installed snow guards. I put them within 6 inches of the eave end as I didn’t want any snow accumulated to fall. I’ve been plagued with doubt everytime I see professionally installed guards on the roof always at the depth of the exterior wall. Even after reading this article, I cannot see the logic of leaving a 2 foot accumulation zone that can still fall. I don’t get enough accumulation to worry about roof snow load particularly when the original cedar shakes retained all the snow. I think I’m okay with the install but still have some nagging doubts.

Leave a Comment


Your email address will not be published. Required fields are marked *