Kinetic façade systems: Adding a dynamic element to building structures

Offering a 360-degree range of motion for the individual flappers, the rod-mount suspension system allows for intermittent views through the kinetic façade and minimizes the appearance of the horizontal supporting structure from within the building.
Offering a 360-degree range of motion for the individual flappers, the rod-mount suspension system allows for intermittent views through the kinetic façade and minimizes the appearance of the horizontal supporting structure from within the building.

Additional costs also may be incurred as a result of testing requirements of the location or application. Local labour costs, union requirements, site access, street closures, timing and scheduling, and project duration, are just some of the installation-related factors that can affect the final cost of kinetic façade systems.

In addition to the costs associated with installation, system type, and testing, other relatively small hardware or structural changes can have a profound impact on the final cost. These include the following.

Flapper density

Flapper density is defined as the number of flappers per square metre. The smaller the flappers, the more individual handling, assembly, labour, and mounting parts are required. For example, it would take about four 130 x 130-mm (5 x 5-in.) flappers to fill a 1-m2 area, assuming a 25-mm (1-in.) space between flappers, while it would take nine 76 x 76 mm (3 x 3 in.) flappers to fill the same area. This increased number of flappers translates to more than double the amount of assembly time, labour, mounting hardware, etc.

Flapper finishing

Flapper elements produced from pre-finished sheet material, such as anodized or painted aluminum, are typically more cost-effective than post-finished flappers. The type of finish also influences the overall cost of the kinetic façade. For example, standard anodize and painted colours will be more economically priced than exotic colours and multi-step coatings. The cost and benefits of each type of finish should be analyzed to ensure the flapper finish does not adversely affect the project budget.

Finish on back of flappers

Finishing the back-side of flappers can incur additional costs because it requires the use of extra material and resources. Anodized flappers will have both front and back faces coated with the same process. Painted flappers, on the other hand, can accommodate different coatings on the front and back face. While both sides can be coated with the same finish, opting for a wash coating on the rear face may reduce overall cost. This painting method is acceptable on the back side of the flapper when it is either not visible or barely visible, which will be the majority of applications.

Supporting structure finish

Boston Logan International Airport’s West Garage’s distinctive wind-driven exterior façade screens its 1700 parking spots, enhancing the view for the travelling public and visitors of the nearby 9/11 Memorial and Hilton Hotel.
Boston Logan International Airport’s West Garage’s distinctive wind-driven exterior façade screens its 1700 parking spots, enhancing the view for the travelling public and visitors of the nearby 9/11 Memorial and Hilton Hotel.

In addition to the finish on flapper elements, the finish applied to the supporting structure (i.e. the horizontal and vertical mounting rails), also influences the cost of the total façade system. A darker, low-sheen finish is typically applied to the supporting elements to accentuate the esthetic quality of the flapper elements. These framing members are usually painted.

Building spans and loads

The required span and environmental loads can affect the weight and size of the kinetic façade’s structural elements. This can, in turn, impact the cost of the system.

Mounting hardware

The mounting hardware and anchoring systems of the flapper elements depend heavily on the required span, deflections, and building substrate materials. This hardware can consist of embeds integrated into the building structure or post-applied anchors supplied by the façade system manufacturer.

Manufacturer and installer considerations

Given the complexity of kinetic façade systems, seek an experienced designer and manufacturer to participate early in the project’s design and specification. Look for one offering preliminary cost estimating, mockups, and a variety of fabrication and installation options to meet each project’s functional and esthetic requirements. Some manufacturers will also manage all aspects of the installation process, providing a single-source price directly to the building owner or general contractor.

For maximum cost efficiency, a kinetic façade manufacturer may be willing to deliver its services solely as a material supplier. With this solution, materials are provided directly to a local installation contractor already involved with the project, such as a glazier, curtain wall installer, roofer, or general contractor. Startup supervision and initial training for installation crews may be included as part of these services. Although training/certification is typically not required by kinetic façade manufacturers, the author, however, strongly recommends that installers work closely with manufacturers to ensure proper installation.

In this role as material supplier, the façade system manufacturer may also offer pre-bid support. Generally, this involves formally presenting the system, its installation processes, and other relevant documentation to prospective general contractors and/or installers. Regardless of the procurement process, formally presenting the product ensures prospective bidders have a thorough knowledge of the system, eventually resulting in better quality and more informed bids.

Control the content you see on ConstructionCanada.net! Learn More.
Leave a Comment

Comments

Your email address will not be published.